3.264 \(\int \frac{(d+e x)^3 \left (d^2-e^2 x^2\right )^p}{x} \, dx\)

Optimal. Leaf size=171 \[ \frac{2 d^2 e (3 p+5) x \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{1}{2},-p;\frac{3}{2};\frac{e^2 x^2}{d^2}\right )}{2 p+3}-\frac{d \left (d^2-e^2 x^2\right )^{p+1} \, _2F_1\left (1,p+1;p+2;1-\frac{e^2 x^2}{d^2}\right )}{2 (p+1)}-\frac{e x \left (d^2-e^2 x^2\right )^{p+1}}{2 p+3}-\frac{3 d \left (d^2-e^2 x^2\right )^{p+1}}{2 (p+1)} \]

[Out]

(-3*d*(d^2 - e^2*x^2)^(1 + p))/(2*(1 + p)) - (e*x*(d^2 - e^2*x^2)^(1 + p))/(3 +
2*p) + (2*d^2*e*(5 + 3*p)*x*(d^2 - e^2*x^2)^p*Hypergeometric2F1[1/2, -p, 3/2, (e
^2*x^2)/d^2])/((3 + 2*p)*(1 - (e^2*x^2)/d^2)^p) - (d*(d^2 - e^2*x^2)^(1 + p)*Hyp
ergeometric2F1[1, 1 + p, 2 + p, 1 - (e^2*x^2)/d^2])/(2*(1 + p))

_______________________________________________________________________________________

Rubi [A]  time = 0.257204, antiderivative size = 171, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.28 \[ \frac{2 d^2 e (3 p+5) x \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{1}{2},-p;\frac{3}{2};\frac{e^2 x^2}{d^2}\right )}{2 p+3}-\frac{d \left (d^2-e^2 x^2\right )^{p+1} \, _2F_1\left (1,p+1;p+2;1-\frac{e^2 x^2}{d^2}\right )}{2 (p+1)}-\frac{e x \left (d^2-e^2 x^2\right )^{p+1}}{2 p+3}-\frac{3 d \left (d^2-e^2 x^2\right )^{p+1}}{2 (p+1)} \]

Antiderivative was successfully verified.

[In]  Int[((d + e*x)^3*(d^2 - e^2*x^2)^p)/x,x]

[Out]

(-3*d*(d^2 - e^2*x^2)^(1 + p))/(2*(1 + p)) - (e*x*(d^2 - e^2*x^2)^(1 + p))/(3 +
2*p) + (2*d^2*e*(5 + 3*p)*x*(d^2 - e^2*x^2)^p*Hypergeometric2F1[1/2, -p, 3/2, (e
^2*x^2)/d^2])/((3 + 2*p)*(1 - (e^2*x^2)/d^2)^p) - (d*(d^2 - e^2*x^2)^(1 + p)*Hyp
ergeometric2F1[1, 1 + p, 2 + p, 1 - (e^2*x^2)/d^2])/(2*(1 + p))

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 51.8461, size = 160, normalized size = 0.94 \[ 3 d^{2} e x \left (1 - \frac{e^{2} x^{2}}{d^{2}}\right )^{- p} \left (d^{2} - e^{2} x^{2}\right )^{p}{{}_{2}F_{1}\left (\begin{matrix} - p, \frac{1}{2} \\ \frac{3}{2} \end{matrix}\middle |{\frac{e^{2} x^{2}}{d^{2}}} \right )} - \frac{d \left (d^{2} - e^{2} x^{2}\right )^{p + 1}{{}_{2}F_{1}\left (\begin{matrix} 1, p + 1 \\ p + 2 \end{matrix}\middle |{1 - \frac{e^{2} x^{2}}{d^{2}}} \right )}}{2 \left (p + 1\right )} - \frac{3 d \left (d^{2} - e^{2} x^{2}\right )^{p + 1}}{2 \left (p + 1\right )} + \frac{e^{3} x^{3} \left (1 - \frac{e^{2} x^{2}}{d^{2}}\right )^{- p} \left (d^{2} - e^{2} x^{2}\right )^{p}{{}_{2}F_{1}\left (\begin{matrix} - p, \frac{3}{2} \\ \frac{5}{2} \end{matrix}\middle |{\frac{e^{2} x^{2}}{d^{2}}} \right )}}{3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((e*x+d)**3*(-e**2*x**2+d**2)**p/x,x)

[Out]

3*d**2*e*x*(1 - e**2*x**2/d**2)**(-p)*(d**2 - e**2*x**2)**p*hyper((-p, 1/2), (3/
2,), e**2*x**2/d**2) - d*(d**2 - e**2*x**2)**(p + 1)*hyper((1, p + 1), (p + 2,),
 1 - e**2*x**2/d**2)/(2*(p + 1)) - 3*d*(d**2 - e**2*x**2)**(p + 1)/(2*(p + 1)) +
 e**3*x**3*(1 - e**2*x**2/d**2)**(-p)*(d**2 - e**2*x**2)**p*hyper((-p, 3/2), (5/
2,), e**2*x**2/d**2)/3

_______________________________________________________________________________________

Mathematica [A]  time = 0.732501, size = 194, normalized size = 1.13 \[ \frac{1}{6} \left (d^2-e^2 x^2\right )^p \left (18 d^2 e x \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{1}{2},-p;\frac{3}{2};\frac{e^2 x^2}{d^2}\right )+\frac{9 d \left (d^2 \left (\left (1-\frac{e^2 x^2}{d^2}\right )^{-p}-1\right )+e^2 x^2\right )}{p+1}+2 e^3 x^3 \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{3}{2},-p;\frac{5}{2};\frac{e^2 x^2}{d^2}\right )+\frac{3 d^3 \left (1-\frac{d^2}{e^2 x^2}\right )^{-p} \, _2F_1\left (-p,-p;1-p;\frac{d^2}{e^2 x^2}\right )}{p}\right ) \]

Antiderivative was successfully verified.

[In]  Integrate[((d + e*x)^3*(d^2 - e^2*x^2)^p)/x,x]

[Out]

((d^2 - e^2*x^2)^p*((9*d*(e^2*x^2 + d^2*(-1 + (1 - (e^2*x^2)/d^2)^(-p))))/(1 + p
) + (18*d^2*e*x*Hypergeometric2F1[1/2, -p, 3/2, (e^2*x^2)/d^2])/(1 - (e^2*x^2)/d
^2)^p + (2*e^3*x^3*Hypergeometric2F1[3/2, -p, 5/2, (e^2*x^2)/d^2])/(1 - (e^2*x^2
)/d^2)^p + (3*d^3*Hypergeometric2F1[-p, -p, 1 - p, d^2/(e^2*x^2)])/(p*(1 - d^2/(
e^2*x^2))^p)))/6

_______________________________________________________________________________________

Maple [F]  time = 0.041, size = 0, normalized size = 0. \[ \int{\frac{ \left ( ex+d \right ) ^{3} \left ( -{e}^{2}{x}^{2}+{d}^{2} \right ) ^{p}}{x}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((e*x+d)^3*(-e^2*x^2+d^2)^p/x,x)

[Out]

int((e*x+d)^3*(-e^2*x^2+d^2)^p/x,x)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (e x + d\right )}^{3}{\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + d)^3*(-e^2*x^2 + d^2)^p/x,x, algorithm="maxima")

[Out]

integrate((e*x + d)^3*(-e^2*x^2 + d^2)^p/x, x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{{\left (e^{3} x^{3} + 3 \, d e^{2} x^{2} + 3 \, d^{2} e x + d^{3}\right )}{\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + d)^3*(-e^2*x^2 + d^2)^p/x,x, algorithm="fricas")

[Out]

integral((e^3*x^3 + 3*d*e^2*x^2 + 3*d^2*e*x + d^3)*(-e^2*x^2 + d^2)^p/x, x)

_______________________________________________________________________________________

Sympy [A]  time = 13.9263, size = 178, normalized size = 1.04 \[ - \frac{d^{3} e^{2 p} x^{2 p} e^{i \pi p} \Gamma \left (- p\right ){{}_{2}F_{1}\left (\begin{matrix} - p, - p \\ - p + 1 \end{matrix}\middle |{\frac{d^{2}}{e^{2} x^{2}}} \right )}}{2 \Gamma \left (- p + 1\right )} + 3 d^{2} d^{2 p} e x{{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, - p \\ \frac{3}{2} \end{matrix}\middle |{\frac{e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )} + 3 d e^{2} \left (\begin{cases} \frac{x^{2} \left (d^{2}\right )^{p}}{2} & \text{for}\: e^{2} = 0 \\- \frac{\begin{cases} \frac{\left (d^{2} - e^{2} x^{2}\right )^{p + 1}}{p + 1} & \text{for}\: p \neq -1 \\\log{\left (d^{2} - e^{2} x^{2} \right )} & \text{otherwise} \end{cases}}{2 e^{2}} & \text{otherwise} \end{cases}\right ) + \frac{d^{2 p} e^{3} x^{3}{{}_{2}F_{1}\left (\begin{matrix} \frac{3}{2}, - p \\ \frac{5}{2} \end{matrix}\middle |{\frac{e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x+d)**3*(-e**2*x**2+d**2)**p/x,x)

[Out]

-d**3*e**(2*p)*x**(2*p)*exp(I*pi*p)*gamma(-p)*hyper((-p, -p), (-p + 1,), d**2/(e
**2*x**2))/(2*gamma(-p + 1)) + 3*d**2*d**(2*p)*e*x*hyper((1/2, -p), (3/2,), e**2
*x**2*exp_polar(2*I*pi)/d**2) + 3*d*e**2*Piecewise((x**2*(d**2)**p/2, Eq(e**2, 0
)), (-Piecewise(((d**2 - e**2*x**2)**(p + 1)/(p + 1), Ne(p, -1)), (log(d**2 - e*
*2*x**2), True))/(2*e**2), True)) + d**(2*p)*e**3*x**3*hyper((3/2, -p), (5/2,),
e**2*x**2*exp_polar(2*I*pi)/d**2)/3

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (e x + d\right )}^{3}{\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x + d)^3*(-e^2*x^2 + d^2)^p/x,x, algorithm="giac")

[Out]

integrate((e*x + d)^3*(-e^2*x^2 + d^2)^p/x, x)